热门IT资讯网

python 多线程与队列

发表于:2024-11-26 作者:热门IT资讯网编辑
编辑最后更新 2024年11月26日,各位好,之前写了多线程,但是在实际的生产中,往往情况比较复杂,要处理一批任务(比如要处理列表中所有元素),这时候不可能创建很多的线程,线程过多反而不好,还会造成资源开销太大,这时候想到了队列。Queu

各位好,之前写了多线程,但是在实际的生产中,往往情况比较复杂,要处理一批任务(比如要处理列表中所有元素),这时候不可能创建很多的线程,线程过多反而不好,还会造成资源开销太大,这时候想到了队列。


Queue队列

Queue用于建立和操作队列,常和threading类一起用来建立一个简单的线程队列。

  • Queue.Queue(maxsize)  FIFO(先进先出队列)
  • Queue.LifoQueue(maxsize)  LIFO(先进后出队列)
  • Queue.PriorityQueue(maxsize)  为优先级越高的越先出来,对于一个队列中的所有元素组成的entries,优先队列优先返回的一个元素是sorted(list(entries))[0]。至于对于一般的数据,优先队列取什么东西作为优先度要素进行判断,官方文档给出的建议是一个tuple如(priority, data),取priority作为优先度。
    如果设置的maxsize小于1,则表示队列的长度无限长

FIFO是常用的队列,常用的方法有:

  • Queue.qsize()   返回队列大小
  • Queue.empty()  判断队列是否为空
  • Queue.full()   判断队列是否满了

  • Queue.get([block[,timeout]])  从队列头删除并返回一个item,block默认为True,表示当队列为空却去get的时候会阻塞线程,等待直到有有item出现为止来get出这个item。如果是False的话表明当队列为空你却去get的时候,会引发异常。
    在block为True的情况下可以再设置timeout参数。表示当队列为空,get阻塞timeout指定的秒数之后还没有get到的话就引发Full异常。

  • Queue.put(...[,block[,timeout]])  向队尾插入一个item,同样若block=True的话队列满时就阻塞等待有空位出来再put,block=False时引发异常。
    同get的timeout,put的timeout是在block为True的时候进行超时设置的参数。
    Queue.task_done()  从场景上来说,处理完一个get出来的item之后,调用task_done将向队列发出一个信号,表示本任务已经完成。

  • Queue.join()  监视所有item并阻塞主线程,直到所有item都调用了task_done之后主线程才继续向下执行。这么做的好处在于,假如一个线程开始处理最后一个任务,它从任务队列中拿走最后一个任务,此时任务队列就空了但最后那个线程还没处理完。当调用了join之后,主线程就不会因为队列空了而擅自结束,而是等待最后那个线程处理完成了。

队列-单线程

import threadingimport queueimport timeclass worker(threading.Thread):    def __init__(self, queue):        threading.Thread.__init__(self)        self.queue = queue        self.thread_stop = False    def run(self):        while not self.thread_stop:            print("thread%d %s: waiting for tast" % (self.ident, self.name))            try:                task = q.get(block=True, timeout=2)  # 接收消息            except queue.Empty:                print("Nothing to do! I will go home!")                self.thread_stop = True                break            print("tasking: %s ,task No:%d" % (task[0], task[1]))            print("I am working")            time.sleep(3)            print("work finished!")            q.task_done()                           # 完成一个任务            res = q.qsize()                         # 判断消息队列大小(队列中还有几个任务)            if res > 0:                print("fuck! Still %d tasks to do" % (res))    def stop(self):        self.thread_stop = Trueif __name__ == "__main__":    q = queue.Queue(3)                                    # 创建队列(大小为3)    worker = worker(q)                                    # 将队列加入类中    worker.start()                                        # 启动类    q.put(["produce cup!", 1], block=True, timeout=None)  # 向队列中添加元素,产生任务消息    q.put(["produce desk!", 2], block=True, timeout=None)    q.put(["produce apple!", 3], block=True, timeout=None)    q.put(["produce banana!", 4], block=True, timeout=None)    q.put(["produce bag!", 5], block=True, timeout=None)    print("***************leader:wait for finish!")    q.join()                                             # 等待所有任务完成    print("***************leader:all task finished!")输出:thread9212 Thread-1: waiting for tasttasking: produce cup! ,task No:1I am workingwork finished!fuck! Still 3 tasks to dothread9212 Thread-1: waiting for tasttasking: produce desk! ,task No:2I am working***************leader:wait for finish!work finished!fuck! Still 3 tasks to dothread9212 Thread-1: waiting for tasttasking: produce apple! ,task No:3I am workingwork finished!fuck! Still 2 tasks to dothread9212 Thread-1: waiting for tasttasking: produce banana! ,task No:4I am workingwork finished!fuck! Still 1 tasks to dothread9212 Thread-1: waiting for tasttasking: produce bag! ,task No:5I am workingwork finished!thread9212 Thread-1: waiting for tast***************leader:all task finished!Nothing to do!i will go home!

队列-多线程

import threadingimport timefrom queue import Queueimg_lists = ['lipei_00006.mp3','lipei_00007.mp3','lipei_00012.mp3','lipei_00014.mp3',             'lipei_00021.mp3','lipei_00027.mp3','lipei_00028.mp3','lipei_00035.mp3',             'lipei_00039.mp3','lipei_00044.mp3','lipei_00047.mp3','lipei_00049.mp3',             'lipei_00057.mp3','lipei_00058.mp3','lipei_00059.mp3','lipei_00061.mp3',             'lipei_00066.mp3','lipei_00068.mp3','lipei_00070.mp3','lipei_00081.mp3',             'lipei_00087.mp3','lipei_00104.mp3','lipei_00106.mp3','lipei_00117.mp3',             'lipei_00123.mp3','lipei_00129.mp3',]q = Queue(10)class Music_Cols(threading.Thread):    def __init__(self, name):        super().__init__(name=name)    def run(self):        global img_lists        global q        while True:            try:                music = img_lists.pop(0)                q.put(music)            except IndexError:                breakclass Music_Play(threading.Thread):    def __init__(self, name):        super().__init__(name=name)    def run(self):        global q        while True:            if q.not_empty:                music = q.get()                print('{}正在播放{}'.format(threading.current_thread(), music))                time.sleep(5)                q.task_done()                print('{}播放结束'.format(music))            else:                breakif __name__ == '__main__':    mc_thread = Music_Cols('music_cols')    mc_thread.setDaemon(True)       # 设置为守护进程,主线程退出时,子进程也kill掉    mc_thread.start()               # 启动进程    for i in range(5):              # 设置线程个数(批量任务时,线程数不必太大,注意内存及CPU负载)        mp_thread = Music_Play('music_play')        mp_thread.setDaemon(True)        mp_thread.start()    q.join()                        # 线程阻塞(等待所有子线程处理完成,再退出)输出:正在播放lipei_00006.mp3正在播放lipei_00007.mp3正在播放lipei_00012.mp3正在播放lipei_00014.mp3正在播放lipei_00021.mp3lipei_00014.mp3播放结束... ...正在播放lipei_00117.mp3lipei_00066.mp3播放结束正在播放lipei_00123.mp3lipei_00104.mp3播放结束正在播放lipei_00129.mp3lipei_00123.mp3播放结束lipei_00117.mp3播放结束lipei_00087.mp3播放结束lipei_00106.mp3播放结束lipei_00129.mp3播放结束

或者(效果与上述一样)

import threadingimport timefrom queue import Queueimg_lists = ['lipei_00006.mp3','lipei_00007.mp3','lipei_00012.mp3','lipei_00014.mp3',             'lipei_00021.mp3','lipei_00027.mp3','lipei_00028.mp3','lipei_00035.mp3',             'lipei_00039.mp3','lipei_00044.mp3','lipei_00047.mp3','lipei_00049.mp3',             'lipei_00057.mp3','lipei_00058.mp3','lipei_00059.mp3','lipei_00061.mp3',             'lipei_00066.mp3','lipei_00068.mp3','lipei_00070.mp3','lipei_00081.mp3',             'lipei_00087.mp3','lipei_00104.mp3','lipei_00106.mp3','lipei_00117.mp3',             'lipei_00123.mp3','lipei_00129.mp3',]q = Queue(10)class Music_Cols(threading.Thread):    def __init__(self, name):        super().__init__(name=name)    def run(self):        while True:            try:                music = img_lists.pop(0)                q.put(music)            except IndexError:                breakclass Music_Play(threading.Thread):    def __init__(self, name):        super().__init__(name=name)    def run(self):        while True:            if q.not_empty:                music = q.get()                print('{}正在播放{}'.format(threading.current_thread(), music))                time.sleep(5)                q.task_done()                print('{}播放结束'.format(music))            else:                breakif __name__ == '__main__':    mc_thread = Music_Cols('music_cols')    mc_thread.setDaemon(True)       # 设置为守护进程,主线程退出时,子进程也kill掉    mc_thread.start()               # 启动进程    for i in range(5):              # 设置线程个数(批量任务时,线程数不必太大,注意内存及CPU负载)        mp_thread = Music_Play('music_play')        mp_thread.setDaemon(True)        mp_thread.start()    q.join()                        # 线程阻塞(等待所有子线程处理完成,再退出)

队列-多线程-图像增强实例

"""开启多线程:图像增强"""import osimport randomimport queueimport numpy as npimport cv2import timeimport threadingdef Affine_transformation(img_array):    rows, cols = img_array.shape[:2]    pointsA = np.float32([[30, 80], [180, 60], [80, 230]])  # 左偏    pointsB = np.float32([[60, 50], [220, 70], [20, 180]])  # 右偏    pointsC = np.float32([[70, 60], [180, 50], [50, 200]])  # 前偏    pointsD = np.float32([[40, 50], [210, 60], [70, 180]])  # 后偏    points1 = np.float32([[50, 50], [200, 50], [50, 200]])    points2 = random.choice((pointsA, pointsB, pointsC, pointsD))    matrix = cv2.getAffineTransform(points1, points2)    Affine_transfor_img = cv2.warpAffine(img_array, matrix, (cols, rows))    return Affine_transfor_imgdef random_rotate_img(img):    rows, cols= img.shape[:2]    angle = random.choice([25, 90, -25, -90, 180])    Matrix = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, 1)    res = cv2.warpAffine(img, Matrix, (cols, rows), borderMode=cv2.BORDER_CONSTANT)    return resdef random_hsv_transform(img, hue_vari, sat_vari, val_vari):    """    :param img:    :param hue_vari: 色调变化比例范围(0,360)    :param sat_vari: 饱和度变化比例范围(0,1)    :param val_vari: 明度变化比例范围(0,1)    :return:    """    hue_delta = np.random.randint(-hue_vari, hue_vari)    sat_mult = 1 + np.random.uniform(-sat_vari, sat_vari)    val_mult = 1 + np.random.uniform(-val_vari, val_vari)    img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV).astype(np.float)    img_hsv[:, :, 0] = (img_hsv[:, :, 0] + hue_delta) % 180    img_hsv[:, :, 1] *= sat_mult    img_hsv[:, :, 2] *= val_mult    img_hsv[img_hsv > 255] = 255    return cv2.cvtColor(np.round(img_hsv).astype(np.uint8), cv2.COLOR_HSV2BGR)def random_gamma_transform(img, gamma_vari):    """    :param img:    :param gamma_vari:    :return:    """    log_gamma_vari = np.log(gamma_vari)    alpha = np.random.uniform(-log_gamma_vari, log_gamma_vari)    gamma = np.exp(alpha)    gamma_table = [np.power(x / 255.0, gamma) * 255.0 for x in range(256)]    gamma_table = np.round(np.array(gamma_table)).astype(np.uint8)    return cv2.LUT(img, gamma_table)def random_flip_img(img):    """    0 = X axis, 1 = Y axis,  -1 = both    :param img:    :return:    """    flip_val = [0,1,-1]    random_flip_val = random.choice(flip_val)    res = cv2.flip(img, random_flip_val)    return resdef clamp(pv):     #防止像素溢出    if pv > 255:        return 255    if pv < 0:        return 0    else:        return pvdef gaussian_noise(image):   # 加高斯噪声    """    :param image:    :return:    """    h, w, c = image.shape    for row in range(h):        for col in range(w):            s = np.random.normal(0, 20, 3)            b = image[row, col, 0] # blue            g = image[row, col, 1] # green            r = image[row, col, 2] # red            image[row, col, 0] = clamp(b + s[0])            image[row, col, 1] = clamp(g + s[1])            image[row, col, 2] = clamp(r + s[2])    return imagedef get_img(input_dir):    img_path_list = []    for (root_path,dirname,filenames) in os.walk(input_dir):        for filename in filenames:            Suffix_name = ['.png', '.jpg', '.tif', '.jpeg']            if filename.endswith(tuple(Suffix_name)):                img_path = root_path+"/"+filename                img_path_list.append(img_path)    return  img_path_listclass IMG_QUEUE(threading.Thread):    def __init__(self, name):        super().__init__(name=name)    def run(self):        while True:            try:                img_path = img_path_list.pop(0)                q.put(img_path)            except IndexError:                breakclass IMG_AUG(threading.Thread):    def __init__(self, name):        super().__init__(name=name)        self.q = q    def run(self):        while True:            if q.not_empty:                img_path = q.get()                try:                    print("doing...")                    img_array = cv2.imread(img_path)                    Affine_transfor_img = Affine_transformation(img_array)                    cv2.imwrite(output_dir + "/" + img_path[len(input_dir):-4] + '_Affine_transfor.png', Affine_transfor_img)                    res_rotate = random_rotate_img(img_array)                    cv2.imwrite(output_dir + "/" + img_path[len(input_dir):-4] + '_rotate_img.png',res_rotate)                    GAMMA_IMG = random_gamma_transform(img_array, 0.3)                    cv2.imwrite(output_dir + "/" + img_path[len(input_dir):-4] + '_GAMMA_IMG.png',GAMMA_IMG)                    res_flip = random_flip_img(img_array)                    cv2.imwrite(output_dir + "/" + img_path[len(input_dir):-4] + '_flip_img.png',res_flip)                    G_Noiseimg = gaussian_noise(img_array)                    cv2.imwrite(output_dir + "/" + img_path[len(input_dir):-4] + '_G_Noise_img.png',G_Noiseimg)                    HSV_IMG = random_hsv_transform(img_array, 2, 0.3, 0.6)                    cv2.imwrite(output_dir + "/" + img_path[len(input_dir):-4] + '_HSV_IMG.png',HSV_IMG)                except:                    print("图像格式错误!")                    pass                q.task_done()            else:                breakif __name__ == '__main__':    input_dir = './cccc'    output_dir = './eeee'    start_time = time.time()            # 开始计时    img_path_list = get_img(input_dir)  # 获取图像数据    q = queue.Queue(10)                 # 设置队列元素个数    my_thread = IMG_QUEUE('IMG_QUEUE')  # 实例化    my_thread.setDaemon(True)           # 设置为守护进程,主线程退出时,子进程也kill掉    my_thread.start()                   # 启动进程    for i in range(5):                  # 设置线程个数(批量任务时,线程数不必太大,注意内存及CPU负载)        mp_thread = IMG_AUG('IMG_AUG')        mp_thread.setDaemon(True)        mp_thread.start()    q.join()                            # 线程阻塞(等待所有子线程处理完成,再退出)    end_time = time.time()    print("Total Spend time:", str((end_time - start_time) / 60)[0:6] + "分钟")

多线程-创建图像缩略图(等比缩放图像)

import osfrom PIL import Imageimport threadingimport timeimport queuedef get_img(input_dir):    img_path_list = []    for (root_path,dirname,filenames) in os.walk(input_dir):        for filename in filenames:            Suffix_name = ['.png', '.jpg', '.tif', '.jpeg']            if filename.endswith(tuple(Suffix_name)):                img_path = root_path+"/"+filename                img_path_list.append(img_path)    return  img_path_listclass IMG_QUEUE(threading.Thread):    def __init__(self, name):        super().__init__(name=name)    def run(self):        while True:            try:                img_path = img_path_list.pop(0)                q.put(img_path)            except IndexError:                breakclass IMG_RESIZE(threading.Thread):    def __init__(self, name):        super().__init__(name=name)    def run(self):        while True:            if q.not_empty:                img_path = q.get()                try:                    im = Image.open(img_path)                    im.thumbnail((size, size))                    print(im.format, im.size, im.mode)                    im.save(img_path, 'JPEG')                except:                    print("图像格式错误!")                    pass                q.task_done()            else:                breakif __name__=='__main__':    input_dir = 'D:\\20190112_20190114_all' #需要创建缩略图,图片的目录    start_time = time.time()            # 开始计时    img_path_list = get_img(input_dir)  # 获取图像数据    size = 800    q = queue.Queue(100)                # 设置队列元素个数    my_thread = IMG_QUEUE('IMG_QUEUE')  # 实例化    my_thread.setDaemon(True)           # 设置为守护进程,主线程退出时,子进程也kill掉    my_thread.start()                   # 启动进程    for i in range(5):                  # 设置线程个数(批量任务时,线程数不必太大,注意内存及CPU负载)        mp_thread = IMG_RESIZE(str(i))        mp_thread.setDaemon(True)        mp_thread.start()    q.join()                            # 线程阻塞(等待所有子线程处理完成,再退出)    end_time = time.time()              # 计时结束    print("Total Spend time:", str((end_time - start_time) / 60)[0:6] + "分钟")
0