(版本定制)第13课:Spark Streaming源码解读之Driver容错安全性
本期内容:
1. ReceiverBlockTracker容错安全性
2. DStream和JobGenerator容错安全性
一:容错安全性
1. ReceivedBlockTracker负责管理Spark Streaming运行程序的元数据。数据层面
2. DStream和JobGenerator是作业调度的核心层面,也就是具体调度到什么程度了,从运行的考虑的。DStream是逻辑层面。
3. 作业生存层面,JobGenerator是Job调度层面,具体调度到什么程度了。从运行的角度的。
谈Driver容错你要考虑Driver中有那些需要维持状态的运行。
1. ReceivedBlockTracker跟踪了数据,因此需要容错。通过WAL方式容错。
2. DStreamGraph表达了依赖关系,恢复状态的时候需要根据DStream恢复计算逻辑级别的依赖关系。通过checkpoint方式容错。
3. JobGenerator表面你是怎么基于ReceiverBlockTracker中的数据,以及DStream构成的依赖关系不断的产生Job的过程。你消费了那些数据,进行到什么程度了。
总结如下:
ReceivedBlockTracker:
1. ReceivedBlockTracker会管理Spark Streaming运行过程中所有的数据。并且把数据分配给需要的batches,所有的动作都会被WAL写入到Log中,Driver失败的话,就可以根据历史恢复tracker状态,在ReceivedBlockTracker创建的时候,使用checkpoint保存历史目录。
下面就从Receiver收到数据之后,怎么处理的开始。
2. ReceiverBlockTracker.addBlock源码如下:
Receiver接收到数据,把元数据信息汇报上来,然后通过ReceiverSupervisorImpl就将数据汇报上来,就直接通过WAL进行容错.
当Receiver的管理者,ReceiverSupervisorImpl把元数据信息汇报给Driver的时候,正在处理是交给ReceiverBlockTracker. ReceiverBlockTracker将数据写进WAL文件中,然后才会写进内存中,被当前的Spark Streaming程序的调度器使用的,也就是JobGenerator使用的。JobGenerator不可能直接使用WAL。WAL的数据在磁盘中,这里JobGenerator使用的内存中缓存的数据结构
/** Add received block. This event will get written to the write ahead log (if enabled). */def addBlock(receivedBlockInfo: ReceivedBlockInfo): Boolean = {try {val writeResult = writeToLog(BlockAdditionEvent(receivedBlockInfo)) //接收数据后,先进行WALif (writeResult) { synchronized {getReceivedBlockQueue(receivedBlockInfo.streamId) += receivedBlockInfo //当WAL成功后,将Block Info元数据信息加入到Block Queue中 } logDebug(s"Stream ${receivedBlockInfo.streamId} received " +s"block ${receivedBlockInfo.blockStoreResult.blockId}") } else { logDebug(s"Failed to acknowledge stream ${receivedBlockInfo.streamId} receiving " +s"block ${receivedBlockInfo.blockStoreResult.blockId} in the Write Ahead Log.") } writeResult } catch {case NonFatal(e) => logError(s"Error adding block $receivedBlockInfo", e)false}}
Driver端接收到的数据保存在streamIdToUnallocatedBlockQueues中,具体结构如下:
private type ReceivedBlockQueue = mutable.Queue[ReceivedBlockInfo]privateval streamIdToUnallocatedBlockQueues = new mutable.HashMap[Int, ReceivedBlockQueue]
allocateBlocksToBatch把接收到的数据分配给batch,根据streamId取出Block,由此就知道Spark Streaming处理数据的时候可以有不同数据来源
那到底什么是batchTime?
batchTime是上一个Job分配完数据之后,开始再接收到的数据的时间。
/** * Allocate all unallocated blocks to the given batch. * This event will get written to the write ahead log (if enabled). */def allocateBlocksToBatch(batchTime: Time): Unit = synchronized {if (lastAllocatedBatchTime == null || batchTime > lastAllocatedBatchTime) {val streamIdToBlocks = streamIds.map { streamId => (streamId, getReceivedBlockQueue(streamId).dequeueAll(x => true)) //根据StreamId获取Block信息 }.toMapval allocatedBlocks = AllocatedBlocks(streamIdToBlocks)if (writeToLog(BatchAllocationEvent(batchTime, allocatedBlocks))) {timeToAllocatedBlocks.put(batchTime, allocatedBlocks)lastAllocatedBatchTime = batchTime //这里有对batchTime进行赋值,就是上一个job分配完数据后,开始在接收到数据的时间 } else { logInfo(s"Possibly processed batch $batchTime need to be processed again in WAL recovery") } } else {logInfo(s"Possibly processed batch $batchTime need to be processed again in WAL recovery") }}
随着时间的推移,会不断产生RDD,这时就需要清理掉一些历史数据,可以通过cleanupOldBatches方法来清理历史数据
/** * Clean up block information of old batches. If waitForCompletion is true, this method * returns only after the files are cleaned up. */def cleanupOldBatches(cleanupThreshTime: Time, waitForCompletion: Boolean): Unit = synchronized {require(cleanupThreshTime.milliseconds < clock.getTimeMillis())val timesToCleanup = timeToAllocatedBlocks.keys.filter { _ < cleanupThreshTime }.toSeq logInfo("Deleting batches " + timesToCleanup)if (writeToLog(BatchCleanupEvent(timesToCleanup))) {timeToAllocatedBlocks --= timesToCleanupwriteAheadLogOption.foreach(_.clean(cleanupThreshTime.milliseconds, waitForCompletion)) } else { logWarning("Failed to acknowledge batch clean up in the Write Ahead Log.") }}
以上几个方法都进行了WAL动作
(record: ReceivedBlockTrackerLogEvent): = {(isWriteAheadLogEnabled) { logTrace(record){.get.write(ByteBuffer.(Utils.(record))clock.getTimeMillis())} {(e) => logWarning(recorde)} } {}}
总结:
WAL对数据的管理包括数据的生成,数据的销毁和消费。上述在操作之后都要先写入到WAL的文件中.
JobGenerator:
Checkpoint会有时间间隔Batch Duractions,Batch执行前和执行后都会进行checkpoint。
doCheckpoint被调用的前后流程:
1、简单看下generateJobs
/** Generate jobs and perform checkpoint for the given `time`. */private def generateJobs(time: Time) {// Set the SparkEnv in this thread, so that job generation code can access the environment // Example: BlockRDDs are created in this thread, and it needs to access BlockManager // Update: This is probably redundant after threadlocal stuff in SparkEnv has been removed.SparkEnv.set(ssc.env)Try { jobScheduler.receiverTracker.allocateBlocksToBatch(time) // allocate received blocks to batchgraph.generateJobs(time) // generate jobs using allocated block} match {case Success(jobs) =>val streamIdToInputInfos = jobScheduler.inputInfoTracker.getInfo(time) jobScheduler.submitJobSet(JobSet(time, jobs, streamIdToInputInfos))case Failure(e) => jobScheduler.reportError("Error generating jobs for time " + time, e) }eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = false)) //job完成后就需要进行checkpoint动作}
2、processEvent接收到消息事件
/** Processes all events */private def processEvent(event: JobGeneratorEvent) { logDebug("Got event " + event) event match {case GenerateJobs(time) => generateJobs(time)case ClearMetadata(time) => clearMetadata(time)case DoCheckpoint(time, clearCheckpointDataLater) =>doCheckpoint(time, clearCheckpointDataLater) // 调用doCheckpoint方法case ClearCheckpointData(time) => clearCheckpointData(time) }}
3、doCheckpoint源码如下:
/** Perform checkpoint for the give `time`. */private def doCheckpoint(time: Time, clearCheckpointDataLater: Boolean) {if (shouldCheckpoint && (time - graph.zeroTime).isMultipleOf(ssc.checkpointDuration)) { logInfo("Checkpointing graph for time " + time)ssc.graph.updateCheckpointData(time) //最终是进行RDD的CheckpointcheckpointWriter.write(new Checkpoint(ssc, time), clearCheckpointDataLater) }}
4、DStream中的updateCheckpointData源码如下:最终导致RDD的Checkpoint
/** * Refresh the list of checkpointed RDDs that will be saved along with checkpoint of * this stream. This is an internal method that should not be called directly. This is * a default implementation that saves only the file names of the checkpointed RDDs to * checkpointData. Subclasses of DStream (especially those of InputDStream) may override * this method to save custom checkpoint data. */private[streaming] def updateCheckpointData(currentTime: Time) { logDebug("Updating checkpoint data for time " + currentTime)checkpointData.update(currentTime) dependencies.foreach(_.updateCheckpointData(currentTime)) logDebug("Updated checkpoint data for time " + currentTime + ": " + checkpointData)}
JobGenerator容错安全性如下图:
参考博客:http://blog.csdn.net/snail_gesture/article/details/51492873#comments